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Abstract
Maass waveforms of CM-type are a special kind of eigenfunction of the
hyperbolic Laplacian whose ‘defining’ components (namely eigenvalue and
Fourier coefficients) are given by simple formulae involving algebraic integers
chosen from a suitable number field K/Q. In this paper, we report on
some computer experiments aimed at ascertaining the extent to which the
autocorrelation behaviour of CM-forms agrees with that of ‘mock’ (i.e.
random) waveforms in the limit of high energy. Our results suggest that
no significant differences are seen.

PACS number: 05.45.Mt

1. Background

Quantum chaos is a topic of natural interest on negatively curved Riemannian manifolds M.
This is a reflection of the well-known fact that the dynamics of a classical point particle
traversing M are typically ergodic (cf e.g. [10–12, 23] and the literature cited there). The
simplest class of such manifolds is that associated with the set-up where M is expressed as
a quotient space �\H , � being a discrete subgroup of SL(2, R) and H the Poincaré upper
half-plane {Im(z) > 0}. To ensure that �\H has good geometry in the hyperbolic metric

ds2 = dx2 + dy2

y2

(the curvature here being −1), one typically assumes that the hyperbolic area∫ ∫
�\H

dx dy

y2

of M is finite. From a dynamical perspective, a good portion of quantum chaos is then
concerned with determining the extent to which high-frequency eigenfunctions of the
hyperbolic Laplacian on �\H simulate random waves as the frequency (or wave number)
tends to infinity.
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Maass waveforms ϕ are simply square-integrable eigenfunctions of the Laplacian on �\H .
The standard framework for these from an arithmetic viewpoint is that where � is just

SL(2, Z) or a finite-index subgroup thereof (more specifically, one of congruence type).
Writing λ = 1

4 + R2 for the associated eigenvalue of −�, the typical Maass waveform then
admits a Fourier expansion of form

ϕ(x, y) =
∞∑

n=1

cn

√
yKiR(2πny)

{
cos(2πnx)

sin(2πnx)

}

wherein R > 0 is tacitly assumed, KiR(u) is the standard exponentially decaying K-Bessel
function ([28]), and the cn are appropriate real coefficients4. Matters are connected to wave
mechanics by setting

ψ(x, y, t) = ϕ(x, y) e−iEt/h̄

and observing that

ih̄
∂ψ

∂t
= − h̄2

2m
�ψ = − h̄2

2m
y2(ψxx + ψyy) = Eψ

holds on H with h̄ = 1,m = 1
2 , E = λ = 1

4 + R2. The number R2 can thus be regarded as a
wave number.

Let δ = π
R

. In very rough terms, ϕ can be thought of as a standing ocean wave (in the
hyperbolic geometry of M) having traditional wavelength (const)δ (cf [10, section 3]). The
number 2δ(∼2π/

√
E) is sometimes called the de Broglie wavelength.

The fact that ϕ ‘lives’ on M simply means that ϕ is �-invariant (i.e. takes the same value
at any two points of H equivalent under the action of �). This hypothesis implies that only
very special R-values and cn’s are possible on any given �.

The upshot of [10–12] is that value-distributionally on M/(the group of reflective
symmetries), the functions ϕ do appear to simulate random waves as R → ∞, at least
over robust two-dimensional subregions such as rectangles both of whose dimensions are kept
bigger than about 50δ or so.

Following the seminal work of Berry [6], a host of papers have appeared dealing with
various aspects of this ‘mimicry’ question in a multitude of more general geometric settings
for M; cf [1, 4, 5, 18, 23] for a reasonable sampling.

One rather surprising aspect of the arithmetic setting is that, for certain very simple choices
of �, some waveforms ϕ have R-values and cn-values which basically ‘come out even’ (to wit
are expressible as simple formulae involving the arithmetic of a quadratic number field such
as Q(

√
5)). Yet ϕ still appears to simulate a random wave (cf [12]). Such ‘explicit-type’ ϕ

are called Maass waveforms of CM-type. We refer to [7, 12] for the technical details of their
construction. Suffice it to say here that the coefficients cn correspond to a generalization of
the idea of a Dirichlet character mod k and that R has format (const)nπ/log ε, where ε is the
fundamental unit of the relevant real quadratic field K.

In working with CM-forms, there is no loss of generality if one thinks of their � as simply
being SL(2, Z); we do so without further comment.

To calculate a Maass waveform at any given (x, y) to, say, 12 decimal places, one basically
needs to use the first (const)R/y terms in the Fourier ansatz. In the case of a CM-form, what
is immediately striking (and cause for pause!) is that a significant fraction of the associated
cn are 0. Clearly, whatever randomness is present in ϕ must reflect those terms which are not
zero.

4 Throughout this paper, we tacitly assume as in [10, section 4] that KiR(u) has been premultiplied by exp( π
2 R).
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Beyond equidistribution (in the L2 sense) and a locally Gaussian value distribution5,
one of the conjectures that grows out of Berry’s wider random wave philosophy [6] is that
high frequency eigenfunctions should (in a two-dimensional setting) exhibit autocorrelation
behaviour which is linked to the standard J0-Bessel function

J0(u) = 1

2π

∫ π

−π

eiu sin θ dθ.

In fact6, in some area-averaged sense, the values of ϕ(P ) and ϕ(Q) should be correlated such
as

J0

[
π

d(P,Q)

δ

]
.

Here d(P,Q) is the shortest-geodesic distance between P and Q on M. Observe, incidentally,
that this Bessel function does tend to zero as d(P,Q)/δ grows. Indeed

J0(u) ∼
√

2

π

cos(u − π/4)√
u

as u → ∞.

[[To avoid topological difficulties, one tacitly assumes in all this that d(Q,P ) = o(1).]]
Thus far, there have been relatively few tests of Berry’s conjecture in non-Euclidean

settings such as �\H , and the overall state-of-affairs remains here somewhat less
satisfactory than one would like (in comparison to curvature zero) (cf [1]). Notwithstanding
the naturalness of Berry’s idea, one wonders, for instance, if 7 the autocorrelation behaviour of
CM-forms may possibly differ from that exhibited by ‘mock’ waveforms ϕ̂ whose coefficients
ĉn are taken to be random numbers chosen according to some admissible distribution (cf [10,
section 6] and [22]; also [13, p 26 (proposition 4.12)] for the a priori format).

In its non-Euclidean form, Berry’s conjecture refers to taking a generic point P in some
two-dimensional subregion S of M (more precisely, M-(its axes of symmetry)) and studying
the correlation of ϕ(P ) and ϕ(Q) for points Q obtained by letting P flow in a random direction
under the geodesic flow for a specified number of seconds. The density function ρ(θ) for the
Q-direction can be chosen essentially arbitrarily (cf here [6, equation (7) and (9)] integrated
against a(q)b(

⇀
p ) using Parseval; also [27, equation (4.6)].)

The machine experiments that we undertook were motivated by a desire to examine the
correlation behaviour of CM-forms in some ‘thinner’ settings where, instead of being restricted
to a given two-dimensional set S, the points P and Q were constrained to lie along certain
rectifiable arcs γ and γ ′. The essential thing of course is that γ and γ ′ correspond to one
another under some natural correspondence (or flow)—so that there is a correlation to be
spoken of.

The idea of using γ in place of S was mentioned earlier in [10, p 295 (bullet 4), 299 (line
21, left)].

To facilitate a comparison with Berry’s conjecture, it is clearly best to look at arcs γ and
γ ′ where the corresponding points P and Q are located a fixed distance apart.

2. Flowing along closed horocycles

Horizontal lines or circles (in H) which are tangent to R are called horocycles. In the case of
a discrete subgroup like SL(2, Z), where the point i∞ is a cusp of width 1, each horocycle
{y = y0} clearly projects onto a closed curve on M = �\H . The hyperbolic length of this
5 Of mean 0.
6 On this point, see also the first paragraph of section 5, remark A below.
7 Due to their deterministic nature.
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curve is immediately seen to be 1/y0. (As the length 1/y0 → ∞, the curve is known to
become equidistributed on M with respect to hyperbolic area (see [14, 24]).)

In contrast to Berry’s situation where one flowed along geodesics, we are now interested
in taking points P = (x, y) along an arc γ and passing to Q = (x + ty, y); i.e. flowing along
closed horocycles.

Observe incidentally that, as a particle, (x0 + ty0, y0) traverses {y = y0} with unit speed
in the hyperbolic metric.

Horocycles are not geodesics. Indeed, the hyperbolic distance between P and Q on H is

cosh−1

(
1 +

t2

2

)

which is always less than |t|. For small values of t, the inverse cosh is readily seen to be
expandible as

|t|
[

1 − 1

24
t2 + O(t4)

]
.

A computer test shows that, at least for −1 � t � 1, the implied constant in O(t4) can be
taken to be the Taylor coefficient 3/640 (=0.004 6875).

So long as γ bypasses any points of ramification ofM (i.e. elliptic fixpoints), the distance
d(P,Q) on M will simply be cosh−1(1 + t2/2), at least for small t.

For waveforms with large R, requiring t to be small is not a problem, since Berry’s
conjecture necessitates looking at the ratio d

δ
≈ |t|

δ
, not |t|.

What is a concern, though, is the length of γ . For simplicity, assume that γ does not cross
itself onM (i.e. is a Jordan arc). As noted in section 1, waveforms ϕ begin to manifest ‘serious
randomness’ only at scales bigger than about 50δ or so; and this was for two-dimensional S.
The comparable number for a one-dimensional setting can only be larger; how much larger is
not immediately clear (and may conceivably depend on the geometry of the given path).

To be on the safe side, whether with ϕ or ϕ̂, it clearly makes sense to keep the length of
γ bigger than 50δ or so. Likewise for γ ′.

3. The experimental set-up

Take � = SL(2, Z). In complex variable notation, the horocyclic flow under discussion is
simply

z̃ = z + ty.

To keep the relation between |dz|/y and |dz̃|/Im(z̃) transparent, it is natural to look first at arcs
γ which are Euclidean line segments. We decided to keep these strictly inside the standard
fundamental polygon for �\H ; i.e.

{|x| < 1
2 , |z| > 1

}
.

After some preliminary tests, we chose to restrict the y-height of γ to be one of three
values; namely 50δ, 500δ, 1600δ. We also opted to keep the basepoint of γ along the line
{y = 1}. (The localizing hypothesis d(Q,P ) = o(1) suggests that this latter choice entails
minimal loss of generality in the large R limit.)

For our CM-forms, we decided to look at:

R1 = 3264.251 302 636 496+

R2 = 25 004.164 978 195 566+

R3 = 100 016.659 912 782 265+

R4 = 150 002.140 110 054 942+

The associated ϕ correspond to the quadratic field Q(
√

5) in the notation of [7, 12]8.
8 The stated Rj are simply Mπ/2 log ε with ε = 1

2 (1 +
√

5) and M = 1000, 7660, 30 640, 45 953.
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Following [10], in ϕ̂(z), we decided to employ ĉn chosen (independent randomly) from a
uniform distribution on [−1, 1]. We took two such samplings and used either one or both in
forming our mock waveforms. For R, we simply used the values R1 and R2. (More on this in
a moment.)

To ensure about 10-digit accuracy in ϕ and ϕ̂ along γ and γ ′, the following n-ranges were
used in the Fourier development:

(3264) 1 � n � 600
(25 004) 1 � n � 4100

(100 016) 1 � n � 16 100
(150 002) 1 � n � 24 010.

(The upper limit in each case is essentially (R + 20R1/3)/2π .) For the associated CM-forms,
this produced 137, 799, 2853, 4159 nonzero cn, respectively. This ‘reduced’ quantity will be
referred to below as NZ.

From the standpoint of NZ, the CM-form with R = 150 002+ seems most naturally
comparable to a mock one with R ∼ 25 000, the point being here that both depend on about
4100 nonvanishing terms.

Because of memory restrictions on our computer, a Cray YMP-EL 4/1024, working out
statistics for cases with NZ � 16 000 proved to be unpleasantly cumbersome; we therefore
opted to stay with NZ � 4200 throughout. This necessitated skipping ϕ̂ with R = R3, R4.

As far as the parameter t goes, we basically chose to employ


|t| � 250δ for heights 50δ, 500δ

and
|t| � 30δ for height 1600δ




as our ‘benchmark’ (or, reference) settings. Guided by what we found, the 250 and 30 were
then raised in selected cases to permit consideration of a number of t-intervals of length 50δ

located much farther out. In all instances, the starting x-value of γ was chosen from among
{0.05, 0.06, 0.07} and one was especially interested in looking for autocorrelation behaviour
that resembled

J0

[
R cosh−1

(
1 +

t2

2

)]
.

Cf the J0 and d(P,Q) asymptotics in sections 1 and 2.
Since one is dealing with C∞ functions, the ϕ and ϕ̂ correlations necessarily vary

continuously with t. In the ranges considered, it was found that taking �t = 1
10δ produced

a rather good (i.e. ‘smooth’) graph; �t = 1
5δ a bit less so. To save time, we used 1

5δ. Any
necessary integrals were evaluated using a trapezoid rule with �y = 1

25δ ( 1
15δ in the case of

1600δ). Our calibration tests with �y = 1
50δ and 1

100δ showed that, at least heuristically, one
was assured of obtaining an additive accuracy of at least three decimal places.

If R is large and matters [in the horocyclic setting] adhere at all to Berry’s conjecture, the
computed correlations will basically need to oscillate between

±
√

2

π
√

m

when |t| ∼ mδ and m is bigger than about 10. To adhere to the restriction d(Q,P ) = o(1),
one keeps m/R � 1. (Cf also our earlier comment about the arbitrariness of direction-density
ρ(θ).)
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Table 1. Intermediate range correlation statistics.

Configuration NZ M 〈C〉 σ(C) M in Mout Medge σ in σ out σ edge M
σ(C)

P (2σ) P ( 3
2 σ)

3kR 600 0.215 −0.002 0.065 0.183 0.215 0.193 0.072 0.057 0.056 3.31 4.2% 14.0%
3kCM 137 0.229 0.003 0.068 0.206 0.229 0.179 0.071 0.065 0.063 3.37 4.6% 13.9%
25kR 4100 0.272 0.007 0.077 0.272 0.229 0.229 0.080 0.074 0.077 3.53 4.7% 13.3%
25kR(0.5) 4100 0.194 −0.002 0.052 0.194 0.162 0.123 0.056 0.048 0.047 3.73 4.2% 13.8%
25kR(1.0) 4100 0.167 −0.002 0.054 0.167 0.150 0.150 0.056 0.051 0.049 3.09 4.0% 13.4%
25kR̄ 4100 0.231 −0.003 0.065 0.223 0.231 0.231 0.069 0.061 0.060 3.55 4.4% 13.2%
150kCM 4159 0.221 0.001 0.065 0.221 0.190 0.190 0.071 0.058 0.053 3.40 5.0% 13.7%
150kCM(0.5) 4159 0.228 0.000 0.062 0.228 0.189 0.157 0.066 0.058 0.054 3.68 4.3% 13.2%
150kCM(1.0) 4159 0.180 −0.001 0.056 0.180 0.173 0.173 0.058 0.054 0.057 3.21 4.3% 13.8%
150kCM2 4159 0.263 −0.004 0.073 0.234 0.263 0.212 0.077 0.068 0.069 3.60 4.2% 12.9%
100kCM 2853 0.234 0.002 0.068 0.234 0.194 0.171 0.069 0.066 0.065 3.44 3.8% 14.1%
100kCM2 2853 0.241 0.008 0.073 0.241 0.197 0.197 0.081 0.065 0.064 3.30 3.7% 13.4%
25kR(�o) 4100 0.407 0.007 0.143 0.407 0.405 0.405 0.140 0.146 0.150 2.85 4.8% 14.6%
25kR̄(�o) 4100 0.551 −0.010 0.197 0.518 0.551 0.551 0.194 0.199 0.198 2.80 4.8% 13.3%
150kCM(�o) 4159 0.534 0.002 0.163 0.534 0.481 0.481 0.166 0.160 0.157 3.28 4.9% 14.1%
150kCM2(�o) 4159 0.550 −0.013 0.190 0.550 0.477 0.476 0.194 0.186 0.188 2.89 4.2% 14.3%
25kRe 4100 0.009 0.229 0.077 2.97 4.2% 12.5%
25kRe2 4100 −0.008 0.144 0.051 2.82 4.8% 15.3%
25kRe3 4100 0.007 0.150 0.061 2.46 3.4% 16.1%
25kR̄e 4100 0.004 0.231 0.060 3.85 5.2% 11.8%
25kR̄e2 4100 0.005 0.227 0.072 3.15 3.6% 14.3%
25kR̄e3 4100 −0.021 0.174 0.060 2.90 3.6% 11.8%

{30δ � |t| � 250δ} ×
{500δ regular

50δ �o

}
For an initial segment Inner : 30δ � |t| � 140δ

with dx
dy

= 0(or else 1
2 , 1) Outer : 140δ � |t| � 250δ

Edge: 200δ � |t| � 250δ

4. Results

Since a 1/
√

m decay rate can hardly be missed, we decided to focus in our first series of
experiments on ‘larger t’, specifically 30δ � |t| � 250δ. (The number 30 was chosen
somewhat arbitrarily after running several exploratory jobs at R = R1 with |t| � 50δ and
height 50δ, utilizing both ϕ and ϕ̂.) Table 1 gives a representative summary of what was found
in the case of γ ’s having height either 50δ or 500δ.

The following notations are used. M signifies the correlation of maximum absolute
value over the relevant t-grid with �t = 1

5δ; 〈C〉 the average correlation; σ(C) the standard
deviation. P(bσ) denotes the fraction of those grid-values t in either {30δ � |t| � 250δ} or
{200δ � |t| � 250δ} for which |C| exceeds bσ . The configurations are coded in a natural
way corresponding to

√
λ − 1/4 and the inverse slope of γ . R indicates use of random sample

no 1 for ĉn; R̄ use of no 2. The starting x-value for γ is 0.07 unless indicated by a subscript;
subscript 2 means 0.05; 3 means 0.06. In the last six configurations, the letter ‘e’ signifies
‘edge job’.

Several conclusions can be immediately drawn from table 1 vis-à-vis the horocyclic flow.

(1) In neither the CM nor the mock cases does there appear to be any kind of clear adherence
to a universal correlation law.

(2) The correlation behaviour of ϕ and ϕ̂ in the regular cases seems roughly comparable;
likewise in the ‘�o’ cases.
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(3) There is only a mild tendency at best for the standard deviations in C to decay as |t|
grows—with nothing even remotely resembling the ‘sought after’ 1/π

√
m appearing

when |t| � 140δ. (Recall that cos θ has root mean square 1/
√

2.) The situation for M,
i.e. the L∞ norms, is even worse.

(4) There does appear to be at least a general tendency for the M and σ -values of C to scale
downward as the length of γ goes up. (In addition to the ‘�o’ cases, cf also those with
slope 1.)

(5) It is not inconceivable that, once |t|/δ gets big enough, what one is seeing is simply
some kind of ‘saturated C-noise’ having a standard deviation that depends on the
given configuration (including γ ) in some simple way. (Since the horocycles under
consideration are periodic, we prefer to use the word ‘saturated’ rather than ‘asymptotic’.)

In drawing these conclusions, note that we have ignored the automorphy-related and
symmetry-related issues which are inherently present geometrically due to the ‘method-of-
images’ on H (cf the remark about d(Q,P ) = o(1) in section 1). A quick calculation shows,
however, that, in the configurations we have used, these factors are a concern only when
R = 3264+, and then only partially.

To go further, it was only natural to look at some additional configurations wherein both
|t| and the length of γ could be larger—and wherein the sign of t was constant (the latter to
circumvent ‘method-of-images’ problems). See tables 2A–3B for a listing of what we found;
also (representative) figures 1–3.

Again, the notations are largely self-explanatory. The prefix ‘T’ in front of a configuration
indicates that the height was 1600δ (i.e. ‘tall’). The intervals used were ±[200δ, 250δ],
±[750δ, 800δ], etc with sign depending on right/left.

In scanning the σ(C) values, it is helpful to keep in mind that

1

π
√

225
= 0.021

1

π
√

775
= 0.011

1

π
√

1575
= 0.008

1

π
√

4775
= 0.005

1

π
√

9575
= 0.003.

Taken together, tables 2A–3B and figures 1–3 clearly provide further support for points
1–5 (even though, in several of the ‘�’ cases, reflective symmetries do enter the picture).

Table 2A. ‘Mock’ form statistics for larger t and a vertical γ .

Configuration NZ M 〈C〉 σ(C) M/σ P (2σ) P ( 3
2 σ)

25kR1600r 4100 0.147 0.008 0.054 2.72 4.0% 17.1%
T 25kR1600r 4100 0.058 0.000 0.027 2.15 2.4 15.5
25kR800r 4100 0.207 −0.009 0.074 2.80 2.8 8.8
T 25kR800r 4100 0.059 0.005 0.027 2.19 2.0 13.9
25kR250r 4100 0.229 −0.009 0.089 2.57 4.0 13.5
T 25kR250r 4100 0.144 −0.012 0.055 2.62 5.6 12.4
25kR250� 4100 0.162 0.028 0.058 2.79 5.2 13.9
T 25kR250� 4100 0.129 0.026 0.037 3.49 2.0 14.3
25kR800� 4100 0.159 −0.019 0.055 2.89 5.6 14.3
T 25kR800� 4100 0.118 0.001 0.038 3.11 4.0 12.7
25kR1600� 4100 0.147 −0.005 0.066 2.23 1.6 12.4
T 25kR1600� 4100 0.083 −0.014 0.034 2.44 6.0% 12.7%

y2 − y1 = 500δ or 1600δ; For initial segment with dx
dy

= 0 (r) flow to 0.07 + ty

t ∈ [t1, t2], t2 − t1 = 50δ (�) flow to 0.07 − ty
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Table 2B. The comparable data for CM-forms.

Configuration NZ M 〈C〉 σ(C) M/σ P (2σ) P ( 3
2 σ)

150kCM9600r 4159 0.151 0.000 0.046 3.28 5.2% 9.6%
150kCM4800r 4159 0.146 −0.004 0.044 3.32 5.2 8.8
150kCM1600r 4159 0.134 0.001 0.061 2.20 1.2 15.9
T 150kCM1600r 4159 0.086 0.002 0.039 2.21 3.2 12.4
150kCM800r 4159 0.115 0.004 0.042 2.74 5.6 15.9
T 150kCM800r 4159 0.073 0.000 0.029 2.52 3.6 16.3
150kCM250r 4159 0.158 0.007 0.048 3.29 6.8 14.3
T 150kCM250r 4159 0.072 0.006 0.028 2.57 2.4 13.9
150kCM250� 4159 0.190 −0.008 0.056 3.39 6.4 12.7
T 150kCM250� 4159 0.091 −0.007 0.033 2.76 5.2 11.6
150CM800� 4159 0.156 −0.009 0.059 2.64 5.2 12.7
T 150kCM800� 4159 0.102 0.000 0.038 2.68 4.8 12.7
150kCM1600� 4159 0.155 0.003 0.053 2.92 6.4 11.6
T 150kCM1600� 4159 0.083 0.005 0.031 2.68 5.2 11.6
150kCM4800� 4159 0.126 −0.003 0.050 2.52 5.6 15.9
150kCM9600� 4159 0.137 0.003 0.052 2.63 4.0% 14.3%

y2 − y1 = 500δ or 1600δ; For initial segment with dx
dy

= 0 (r) flow to 0.07 + ty

t ∈ [t1, t2], t2 − t1 = 50δ (�) flow to 0.07 − ty

Table 3A. Mock form statistics for larger t and an inclined γ .

Configuration NZ M 〈C〉 σ(C) M/σ P (2σ) P ( 3
2 σ)

T 25kR1600r(1.0) 4100 0.040 −0.002 0.017 2.35 2.8% 17.5%
T 25kR800r(1.0) 4100 0.059 −0.000 0.023 2.57 5.6 15.1
25kR250r(1.0) 4100 0.150 −0.006 0.052 2.88 2.4 13.1
T 25kR250r(1.0) 4100 0.085 −0.005 0.035 2.43 2.4 13.5
25kR250�(1.0) 4100 0.131 −0.003 0.045 2.91 4.4 14.7
T 25kR250�(1.0) 4100 0.080 −0.003 0.029 2.76 4.4 13.9
T 25kR800�(1.0) 4100 0.065 −0.002 0.028 2.32 2.8 13.9
T 25kR1600�(1.0) 4100 0.055 −0.002 0.026 2.12 1.2% 16.7%

y2 − y1 = 500δ or 1600δ; For initial segment with dx
dy

= 1 (r) flow to x0(y) + ty

t ∈ [t1, t2], t2 − t1 = 50δ (�) flow to x0(y) − ty

Table 3B. The comparable data for CM-forms.

Configuration NZ M 〈C〉 σ(C) M/σ P (2σ) P ( 3
2 σ)

T 150kCM1600r(1.0) 4159 0.074 0.004 0.032 2.31 3.6% 15.1%
T 150kCM800r(1.0) 4159 0.063 −0.002 0.025 2.52 3.2 17.1
150kCM250r(1.0) 4159 0.113 −0.003 0.048 2.35 3.6 14.3
T 150kCM250r(1.0) 4159 0.102 0.001 0.036 2.83 4.8 15.5
150kCM250�(1.0) 4159 0.173 −0.005 0.064 2.70 1.2 15.9
T 150kCM250�(1.0) 4159 0.094 −0.002 0.039 2.41 3.6 12.4
T 150kCM800�(1.0) 4159 0.074 0.000 0.026 2.85 3.6 12.0
T 150kCM1600�(1.0) 4159 0.052 0.002 0.021 2.48 5.6% 14.7%

y2 − y1 = 500δ or 1600δ; For initial segment with dx
dy

= 1 (r) flow to x0(y) + ty

t ∈ [t1, t2], t2 − t1 = 50δ (�) flow to x0(y) − ty
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Table 4. Data for a Euclidean variant.

Configuration NZ M 〈C〉 σ(C) M/σ P (2σ) ( 3
2 σ)

25kR1600rE 4100 0.186 −0.003 0.078 2.38 1.6% 12.7%
25kR800rE 4100 0.189 −0.023 0.070 2.70 3.6 13.5
25kR800�E 4100 0.238 −0.024 0.080 2.98 5.2 14.7
25kR1600�E 4100 0.137 0.012 0.065 2.11 0.8 13.9
150kCM9600rE 4159 0.150 −0.002 0.060 2.50 5.6 14.3
150kCM4800rE 4159 0.145 −0.009 0.061 2.38 6.0 13.9
150kCM1600rE 4159 0.198 −0.003 0.061 3.25 4.4 13.1
150kCM800rE 4159 0.131 0.002 0.048 2.73 6.4 13.5
150kCM800�E 4159 0.202 −0.012 0.063 3.21 3.6 12.7
150kCM1600�E 4159 0.123 −0.002 0.053 2.32 4.0 15.1
150kCM4800�E 4159 0.138 −0.003 0.055 2.51 6.0 14.3
150kCM9600�E 4159 0.150 0.006 0.060 2.50 2.8 12.7

y2 − y1 = 500δ; For initial segment (r) flow to 0.07 + t

t ∈ [t1, t2], t2 − t1 = 50δ with dx
dy

= 0 (�) flow to 0.07 − t
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Figure 1. Correlation plots for configurations T25kR250r and T150kCM250r in tables 2A and 2B
(that is to say: mock and CM-forms having R ∼= 25k, 150k, respectively, a ‘tall’ vertical γ , and m
ranging from 200 to 250). The heights ±2σ(C) are indicated. Though the number of peaks and
valleys is approximately correct, there is clearly little adherence to a

√
2/π

√
m amplitude in either

plot. Note too that
√

2/π
√

225 = 0.030.

Table 4, which features straightforward Euclidean translation, is included mainly for
curiosity’s sake. It is basically consistent with tables 2–3 and points 1, 2, 3, 5.

To address the possibility in all this that C may be being unduly affected by some lack
of equidistribution (in the L2 sense) along the one-dimensional arcs γ and γ ′, we performed
a number of further tests. One was simply to redefine the correlation C to have schematic
format I/s(0)2 instead of I/s(0)s(t). This typically produced only modest changes in the
M and σ(C) values over the respective intervals, and, in particular, no essential changes in
points 1–5.

In tables 5A–5D, using an obvious shorthand,we indicate the mean and standard deviation
of the average and root mean square of ϕ (or ϕ̂) taken along γ ′ with respect to |dz̃|/Im(z̃) for
each of our configurations. (The final columns gives the corresponding data for γ .)

The values for the root mean square of ϕ(ϕ̂) compare quite favourably, in fact, with the
heuristic

√
π
8 � discussed in [10, section 6] (especially if the ‘�o’ configurations are omitted).
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Figure 2. Correlation plot for (mock, regular) configuration 25kR250r in table 2A. The very light
dotted lines depict ±2σ(C). The increase seen in σ(C) (from 0.055 to 0.089) as the length of γ is
reduced from 1600δ to 500δ is typical.
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Figure 3. Correlation plots for (regular) configurations 150kCM250r and 150kCM9600r in
table 2B. The heights ±2σ(C) (=±0.096, ±0.092) are indicated. Observe that the general texture
in these plots is similar even though, in the second one, m is over 38 times bigger.

One computes

� = 1

X

∑
n�X

|cn|2

or

1

X

∑
n�X

|ĉn|2



for X-values approximately equal to the upper limit stated in paragraph 5 of section 3, and
then forms the associated

√
π�/8. The latter do not vary all that much. In this way, the

heuristically expected ‘ideal’ RMS-values are found to conservatively be

• 0.359 ± 0.003 for 3kR

• 0.430 ± 0.003 for 3kCM

• 0.358 ± 0.002 for 25kR∗ cases

• 0.366 ± 0.002 for 25kR̄∗ cases

• 0.443 ± 0.002 for 100kCM∗ cases

• 0.419 ± 0.001 for 150kCM∗ cases.
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Table 5A. Waveform fluctuation data corresponding to table 1.

Configuration Average R.M.S.
√

π
8 � For γ

3kR[±30,±250] 0.000 ± 0.003 0.358 ± 0.014 0.359 (0.003, 0.320)
3kCM[±30,±250] 0.000 ± 0.012 0.428 ± 0.018 0.430 (0.013, 0.443)
25kR[∗] 0.000 ± 0.007 0.347 ± 0.015 0.358 (−0.008, 0.366)

25kR(0.5)[∗] 0.000 ± 0.017 0.352 ± 0.015 0.358 (−0.023, 0.344)

25kR(1.0)[∗] 0.000 ± 0.005 0.349 ± 0.010 0.358 (−0.008, 0.357)

25kR̄[∗] 0.000 ± 0.004 0.363 ± 0.013 0.366 (0.001, 0.374)
150kCM[∗] 0.000 ± 0.002 0.423 ± 0.015 0.419 (0.001, 0.421)
150kCM(0.5)[∗] 0.000 ± 0.020 0.428 ± 0.015 0.419 (0.019, 0.423)
150kCM(1.0)[∗] 0.000 ± 0.008 0.435 ± 0.014 0.419 (−0.009, 0.397)

150kCM2[∗] 0.000 ± 0.015 0.419 ± 0.017 0.419 (−0.002, 0.349)

100kCM[∗] 0.000 ± 0.016 0.435 ± 0.017 0.443 (−0.017, 0.442)

100kCM2[∗] 0.000 ± 0.001 0.429 ± 0.019 0.443 (−0.000, 0.486)

25kR(�o)[∗] 0.000 ± 0.014 0.338 ± 0.040 0.358 (−0.007, 0.317)

25kR̄(�o)[∗] 0.000 ± 0.090 0.355 ± 0.042 0.366 (−0.033, 0.344)

150kCM(�o)[∗] 0.000 ± 0.048 0.420 ± 0.048 0.419 (−0.072, 0.492)

150kCM2(�o)[∗] 0.000 ± 0.019 0.427 ± 0.053 0.419 (−0.009, 0.446)

25kRe[±200,±250] 0.000 ± 0.007 0.359 ± 0.017 0.358 (−0.008, 0.366)

25kRe2[∗] 0.000 ± 0.006 0.336 ± 0.011 0.358 (0.009, 0.347)
25kRe3[∗] 0.000 ± 0.009 0.345 ± 0.012 0.358 (0.006, 0.337)
25kR̄e[∗] 0.000 ± 0.005 0.356 ± 0.013 0.366 (0.001, 0.374)
25kR̄e2[∗] 0.000 ± 0.011 0.364 ± 0.015 0.366 (0.015, 0.379)
25kR̄e3[∗] 0.000 ± 0.023 0.357 ± 0.013 0.366 (0.013, 0.360)

In each instance, one knows from [10, section 6] (and Fubini’s theorem) that an additive
error of O(1)R−1/3 is more or less inevitable in the RMS values. We remark here that

R
− 1

3
1 = 0.067 R

− 1
3

2 = 0.034 R
− 1

3
3 = 0.022 R

− 1
3

4 = 0.019

and that the likely implied constant in O(1) can be shown (by a heuristic calculation based on
[10, equations (2.3), (2.4)] and [20]) to be at most 2

√
π�/8.

The upshot, of course, is that in all our configurations (except possibly the ‘�o’ ones), it
is fair to say that equidistribution is seen to be taking hold in a generally robust manner along
the various arcs γ ′.

This is reassuring not only for the calculation of C, but also intrinsically (cf [10, p 299
(line 21, left)]).

Our results about C in the range |t| � 30δ clearly raise a host of further questions
eminently suitable for investigation in a later paper; see section 5 for some additional
comments concerning this.

We now shift our focus to ‘smaller t’; i.e. |t| � 30δ. Here the situation apropos Berry’s
conjecture turns out to be much more satisfactory.

Let D(t) = ∣∣C(t) − J0
[
R cosh−1

(
1 + 1

2 t2
)]∣∣. Table 6 shows the mean and maximum

values of D(t) taken over the usual 1
5δ-grid on either {|t| � 6δ} or {|t| � 30δ} for a variety

of configurations. (For scaling purposes, observe that
√

2/π
√

m = 0.18, 0.12, 0.08 when
m = 6, 15 and 30.)

Once again, there is a manifest tendency for the fit to improve as the length of γ goes
up. The utility of examining D(t) over both {|t| � 6δ} and {|t| � 30δ} naturally seems
highest in the ‘tall’ (i.e. T ) cases, particularly given points 3 through 5 in the |t| � 30δ
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setting. In particular: note that the slight anomaly exhibited by configuration T150kCM(1.0)
on {|t| � 6δ} basically ‘corrects itself’ over {|t| � 30δ}.

Observe too that the fits for R = 25 004+(ϕ̂) and R = 150 002+(ϕ) are roughly comparable
throughout the ‘�o’, regular, and ‘tall’ settings.

See figures 4–9 for some representative plots of C(t) versus J0
[
R cosh−1

(
1 + 1

2 t2
)]

.

Particularly on the basis of the T-configurations, it seems reasonable to say that, in the
present horocyclic setting,

C(t) does finally appear to be converging as R → ∞ to J0
[
R cosh−1

(
1 + 1

2 t2
)]

albeit
rather slowly (not only in regard to |t|/δ, but also the length of γ ).

Just as with |t| � 30δ, there is clearly room here (not to mention need!) for a variety of
further experiments.

The bulk of our results were obtained by running microtasked vectorized code on all
4 processors of Uppsala’s Cray YMP-EL. The availability of greater memory and a larger
number of processors would have enabled us to go much further. A typical runtime for one of
our ‘T’ jobs on [−30δ, 30δ] was 3.93 × 8.71 h = 34.23 h.

Table 5B. Corresponding to table 2.

Configuration Average R.M.S.
√

π
8 � For γ

25kR1600r 0.000 ± 0.010 0.364 ± 0.014 0.358 (−0.008, 0.366)

T 25kR1600r 0.000 ± 0.011 0.361 ± 0.006 0.358 (−0.000, 0.359)

25kR800r 0.000 ± 0.007 0.362 ± 0.011 0.358 (−0.008, 0.366)

T 25kR800r 0.000 ± 0.012 0.368 ± 0.005 0.358 (−0.000, 0.359)

25kR250r 0.000 ± 0.007 0.367 ± 0.017 0.358 (−0.008, 0.366)

T 25kR250r 0.000 ± 0.011 0.358 ± 0.008 0.358 (−0.000, 0.359)

25kR250� 0.000 ± 0.007 0.351 ± 0.014 0.358 (−0.008, 0.366)

T 25kR250� 0.000 ± 0.011 0.353 ± 0.007 0.358 (−0.000, 0.359)

25kR800� 0.000 ± 0.007 0.342 ± 0.013 0.358 (−0.008, 0.366)

T 25kR800� 0.000 ± 0.012 0.351 ± 0.007 0.358 (−0.000, 0.359)

25kR1600� 0.000 ± 0.012 0.349 ± 0.012 0.358 (−0.008, 0.366)

T 25kR1600� 0.000 ± 0.010 0.358 ± 0.006 0.358 (−0.000, 0.359)

150kCM9600r 0.000 ± 0.013 0.406 ± 0.014 0.419 (0.001, 0.421)
150kCM4800r 0.000 ± 0.006 0.434 ± 0.016 0.419 (0.001, 0.421)
150kCM1600r 0.000 ± 0.002 0.420 ± 0.013 0.419 (0.001, 0.421)
T 150kCM1600r 0.000 ± 0.005 0.419 ± 0.006 0.419 (−0.004, 0.410)

150kCM800r 0.000 ± 0.004 0.426 ± 0.017 0.419 (0.001, 0.421)
T 150kCM800r 0.000 ± 0.007 0.423 ± 0.007 0.419 (−0.004, 0.410)

150kCM250r 0.000 ± 0.001 0.425 ± 0.014 0.419 (0.001, 0.421)
T 150kCM250r 0.000 ± 0.006 0.419 ± 0.008 0.419 (−0.004, 0.410)

150kCM250� 0.000 ± 0.004 0.416 ± 0.013 0.419 (0.001, 0.421)
T 150kCM250� 0.000 ± 0.007 0.414 ± 0.007 0.419 (−0.004, 0.410)

150kCM800� 0.000 ± 0.002 0.420 ± 0.014 0.419 (0.001, 0.421)
T 150kCM800� 0.000 ± 0.006 0.420 ± 0.007 0.419 (−0.004, 0.410)

150kCM1600� 0.000 ± 0.005 0.402 ± 0.009 0.419 (0.001, 0.421)
T 150kCM1600� 0.000 ± 0.006 0.412 ± 0.006 0.419 (−0.004, 0.410)

150kCM4800� 0.000 ± 0.011 0.439 ± 0.019 0.419 (0.001, 0.421)
150kCM9600� 0.000 ± 0.007 0.400 ± 0.011 0.419 (0.001, 0.421)
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Table 5C. Corresponding to table 3.

Configuration Average R.M.S.
√

π
8 � For γ

T 25kR1600r(1.0) 0.000 ± 0.004 0.374 ± 0.008 0.358 (−0.001, 0.355)

T 25kR800r(1.0) 0.000 ± 0.003 0.355 ± 0.005 0.358 (−0.001, 0.355)

25kR250r(1.0) 0.000 ± 0.005 0.352 ± 0.010 0.358 (−0.008, 0.357)

T 25kR250r(1.0) 0.000 ± 0.003 0.350 ± 0.005 0.358 (−0.001, 0.355)

25kR250�(1.0) 0.000 ± 0.008 0.341 ± 0.007 0.358 (−0.008, 0.357)

T 25kR250�(1.0) 0.000 ± 0.007 0.354 ± 0.004 0.358 (−0.001, 0.355)

T 25kR800�(1.0) 0.000 ± 0.006 0.350 ± 0.005 0.358 (−0.001, 0.355)

T 25kR1600�(1.0) 0.000 ± 0.005 0.357 ± 0.005 0.358 (−0.001, 0.355)

T 150kCM1600r(1.0) 0.000 ± 0.001 0.415 ± 0.006 0.419 (0.006, 0.416)
T 150kCM800r(1.0) 0.000 ± 0.005 0.418 ± 0.006 0.419 (0.006, 0.416)
150kCM250r(1.0) 0.000 ± 0.010 0.432 ± 0.017 0.419 (−0.009, 0.397)

T 150kCM250r(1.0) 0.000 ± 0.006 0.440 ± 0.008 0.419 (0.006, 0.416)
150kCM250�(1.0) 0.000 ± 0.002 0.443 ± 0.017 0.419 (−0.009, 0.397)

T 150kCM250�(1.0) 0.000 ± 0.005 0.426 ± 0.007 0.419 (0.006, 0.416)
T 150kCM800�(1.0) 0.000 ± 0.009 0.422 ± 0.009 0.419 (0.006, 0.416)
T 150kCM1600�(1.0) 0.000 ± 0.008 0.409 ± 0.004 0.419 (0.006, 0.416)

Table 5D. And, finally, corresponding to table 4.

Configuration Average R.M.S.
√

π
8 � For γ

25kR1600rE 0.000 ± 0.011 0.361 ± 0.010 0.358 (−0.008, 0.366)

25kR800rE 0.000 ± 0.010 0.361 ± 0.009 0.358 (−0.008, 0.366)

25kR800�E 0.000 ± 0.010 0.340 ± 0.011 0.358 (−0.008, 0.366)

25kR1600�E 0.000 ± 0.011 0.351 ± 0.008 0.358 (−0.008, 0.366)

150kCM9600rE 0.000 ± 0.022 0.413 ± 0.015 0.419 (0.001, 0.421)
150kCM4800rE 0.000 ± 0.013 0.431 ± 0.015 0.419 (0.001, 0.421)
150kCM1600rE 0.000 ± 0.026 0.416 ± 0.012 0.419 (0.001, 0.421)
150kCM800rE 0.000 ± 0.021 0.424 ± 0.018 0.419 (0.001, 0.421)
150kCM800�E 0.000 ± 0.006 0.421 ± 0.014 0.419 (0.001, 0.421)
150kCM1600�E 0.000 ± 0.024 0.404 ± 0.013 0.419 (0.001, 0.421)
150kCM4800�E 0.000 ± 0.002 0.431 ± 0.015 0.419 (0.001, 0.421)
150kCM9600�E 0.000 ± 0.010 0.408 ± 0.010 0.419 (0.001, 0.421)

5. Remarks

To better understand the foregoing results, we need to make a number of comments.

(A) One knows that, in Euclidean space, the Berry autocorrelation conjecture is a consequence
of the (more general) Berry–Voros hypothesis concerning the limiting behaviour of
the spatially averaged Wigner function �̄(q, p) (cf [6, equations (9), (20), (21)]; also
[21, section 8.1]. In hyperbolic space, however, the geometry is different and the
implication is not so clear.

At least in the case of a uniform density ρ(θ) = 1/2π , (the area-averaged form of)
Berry’s conjecture turns out to be rather easily derivable from quantum unique ergodicity
on M; i.e. wavefunction equidistribution in the L2 sense.
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To see this, it suffices to work locally on M, hence H. To define θ consistently about
each non-ramified testpoint z0, one writes

i
z − z0

z − z̄0
= r eiθ .

The affine map z = y0w + x0 will then pull things back to the standard geodesic polar
coordinate system at i. As usual

r = tanh
d(z, z0)

2
.

Table 6. Mean/max values for D(t).

Configuration |t| � 6δ |t| � 30δ

3kR (0.097, 0.249)
3kCM (0.060, 0.216)
25kR (0.080, 0.253) (0.089, 0.297)
T 25kR (0.047, 0.107) (0.046, 0.151)
25kR(0.5) (0.036, 0.117) (0.039, 0.126)
T 25kR(0.5) (0.024, 0.084) (0.027, 0.084)
25kR(1.0) (0.035, 0.092) (0.040, 0.121)
T 25kR(1.0) (0.019, 0.052) (0.022, 0.079)
25kR̄ (0.041, 0.111)
150kCM (0.063, 0.142) (0.056, 0.173)
T 150kCM (0.036, 0.085) (0.035, 0.115)
150kCM(0.5) (0.049, 0.133) (0.043, 0.133)
T 150kCM(0.5) (0.023, 0.055) (0.026, 0.071)
150kCM(1.0) (0.037, 0.092) (0.041, 0.131)
T 150kCM(1.0) (0.035, 0.093) (0.029, 0.093)
150kCM2 (0.052, 0.161)
100kCM (0.038, 0.127)
100kCM2 (0.045, 0.138)
25kR(�o) (0.222, 0.518)
25kR̄(�o) (0.152, 0.368)
150kCM(�o) (0.133, 0.447)
150kCM2(�o) (0.222, 0.439)
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Figure 4. Correlation plots for configurations 25kR(�o), 150kCM(�o) over {|t| � 6δ}. The lighter
curve is J0[R cosh−1(1 + t2/2)].
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Figure 5. The same as figure 4 but for (regular) configurations 25kR, 150kCM.
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Figure 6. Correlation plots for (tall) configurations T25kR, T150kCM.
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Figure 7. Correlation plots for (tall) configurations T25kR(0.5), T150kCM(0.5).

Let ϕ(x, y) be any square integrable wavefunction on M with eigenvalue λ = 1
4 + R2.

The quantity we need to compute is

C(m) =
∫
S

∫ 2π

0 ϕ(z0)ψ(r eiθ )ρ(θ) dθ dA{∫
S

∫ 2π

0 ϕ(z0)2ρ(θ) dθ dA
}1/2 {∫

S

∫ 2π

0 ψ(r eiθ )2ρ(θ) dθ dA
}1/2
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Figure 8. Correlation plots for (tall) configurations T25kR(1.0), T150kCM(1.0).
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Figure 9A. Correlation plots for (tall) configurations T25kR(1.0), T150kCM(1.0) over the bigger
interval {−30δ � t � 0}. The lighter curve is again J0[R cosh−1(1 + t2/2)].
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Figure 9B. Correlation plots for (tall) configurations T25kR(1.0), T150kCM(1.0) over {0 � t �
30δ}.

where r = tanh(mδ/2), dA = y−2
0 dx0 dy0, ψ is the obvious z0-transplant of ϕ, and S is

some small two-dimensional subregion of M. There is no loss of generality if we take
the L2 norm of ϕ to be 1; we do so. A simple calculation using QUE and the affine map
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z = y0w + x0 shows that the denominator is asymptotic to A(S)/A(M) for each m > 0
(and, in fact, any ρ). In the numerator, one finds using [13, p 21 (line 7)] that∫ 2π

0
ψ(r eiθ )ρ(θ) dθ = 1

2π

∫ 2π

0
ψ(r eiθ ) dθ

= ϕ(z0)F

(
1

2
− iR,

1

2
+ iR; 1; r2

r2 − 1

)
. (5.1)

We thus have

C(m) ∼ F

[
1

2
+ iR,

1

2
− iR; 1; − sinh2(mδ/2)

]
.

To connect things with J0, we use the elementary fact that

lim
R→∞

F

(
1

2
− iR,

1

2
+ iR; 1; − u2

4R2 + 1

)
= J0(u) (5.2)

holds uniformly over compact subsets of C (see [28, pp 154, 155])9. This gives C(m) ∼
J0(πm), exactly as expected10 (compare [1, p 210]).

The case of more general density functions ρ can presumably be pushed through
using an appropriate pseudodifferential operator variant of QUE. In this regard cf [3,
equations (13), (16), (19)], [5, equations (28) and (31)], [9, equation (23)], (5.1), [13,
p 21 (lines 4–8)] and [27, equation (4.6)].

(B) In line with [13, p 21], it is natural to think of ψ(r eiθ ) = ϕ(y0w + x0) in C(m) as being
written

ϕ(z0)F

(
1

2
− iR,

1

2
+ iR; 1; r2

r2 − 1

)
+ [[remainder]].

The function ϕ(z0)[[remainder]] is reminiscent of the distribution dUj considered in [29,
pp 8, 9] (see [29, p 25 (3.6)], [17, p 1479] and [15] for some additional perspectives).

The foregoing decomposition and the discussion in (A) suggest that the appearance
of J0 in our experiments for d/δ small is most likely a manifestation of (5.2) and an
appropriate one-dimensional �DO form of QUE being true—at least in the CM and
mock settings.

To better appreciate this, observe that, for m > 0, the horocyclic flow

z̃ = z + (mδ)y

taking γ onto γ ′ is pointwise equivalent to a geodesic flow inclined at angle arctan
(

1
2 t
)
,

where t = mδ. Similarly for m < 0. One is thus dealing, in the γ -analogue of C(m),
with density functions ρ which are effectively Dirac deltas having a ‘sliding’ centre.

In this regard, see also the O(1)R−1/3 heuristic mentioned in connection with
tables 5A–5D (column 3).

(C) As R → ∞, it is tempting to try to replace the ‘sliding’ deltas with fixed ones. To this end,
let ζ temporarily denote the point obtained by flowing to the right along the horizontally
directed geodesic at z a distance of t units. One readily checks that

ζ = z̃ + yO(t2)

for |t| < 1. Upon setting t = mδ and remembering that grad ϕ = O(R) (at least
heuristically), we immediately see that

ϕ(ζ ) = ϕ(z̃) + O

(
m2

R

)
. (5.3)

9 The rate of convergence in (5.2) naturally slows down as |u| grows.
10 Note too that when ϕ is of CM-type, QUE is a theorem (cf [16, 25]).
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In this light, the results in section 4 for d/δ small can be equivalently interpreted as
supporting the ‘γ -theoretic’ version of the usual Berry conjecture with ρ = δ(θ − nπ).11

(D) In section 3 paragraph 2, we suggested that taking a y = 1 baseline entails minimal loss
of generality for large R—a fact that seems eminently reasonable if the relevant ϕ (and ϕ̂)
are viewed as formal Fourier developments à la [10, section 6] and the H-lengths of γ and
γ ′ are kept small12.

To the extent that y = 1 and y = y0 do produce similar behaviour, it is natural to
contemplate taking y0 successively smaller (in steps) so that the pull-back of {y = y0}
to the standard fundamental polygon F of SL(2, Z)\H becomes ever more dense at the
level of phase space. Cf [24] for this last point.

Insofar as d/δ and �(γ )/δ are both kept bounded, one is quickly led to the expectation
that, at least for ‘true’ ϕ, results akin to those in section 4 should be found for flows in F
(either geodesic or horocyclic!) which start out at an arbitrary angle of inclination.

The essential point in this is that the pull-back mappings are all (conformal) isometries,
which enables an analogue of (5.3) to be derived on a case-by-case basis, since in each

(a ‘radius’ of mδ)· [a maximal angular variation of O(1)�(γ )]

= (mδ)O(1)δ = O(1)mR−2.

Needless to say: some further experiments exploring this heuristic expectation would
naturally be very useful (not just for CM-cases, but also Maass forms of ‘generic’ type).

In mock settings, one fully expects the same independence of direction to be seen in
any experiment. Here, however, the emphasis is a bit different—and supplying a rigorous
proof for things (in the spirit, say, of [22]) may not be entirely out of the question.

(E) The O(1)R−1/3 heuristic mentioned in connection with table 5’s RMS-entries is obtained
by making a natural approximation to the sum

1

2

∑
n�M

|cn|2yKiR(2πny)2 ([10, equation (6.6)])

based on [20]. Along the way, three important sources of error are simply ignored; namely

(i) the effect of replacing
[
0, 1

2

]
in [22] by a much shorter interval [x1, x2];

(ii) the contribution from r(u) ≡∑n�u |cn|2 − �u;
(iii) the contribution from the generalized trigonometric sum cited in [10, p 297 (line-9,

left)].

By using the same idea but a more careful treatment of KiR(2πny)2 based on the identity∫ ∞

x

Ai(t)2 dt = Ai ′(x)2 − xAi(x)2 (5.4)

one is able to replace O(1)R−1/3 by

O(1)

√
log R

R
.

This new heuristic is interesting because it is essentially identical with the O
(
R− 1

2 +ε
)

bound obtained by Luo and Sarnak [19] in spectrally averaged two-dimensional
‘macroscopic’ (non de Broglie) settings over SL(2, Z)\H . In this regard, see also [2] and
[8]. Reference [8] includes a suggestive link with random matrix theory.

11 The use of z = y0w + x0 being tacitly understood.
12 The latter condition guarantees that the set of ‘active’ cn(ĉn) remains relatively fixed.
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(F) Our final comment pertains to the ‘saturated noise levels’ found in tables 1–4 (cf point 5 in
section 4) and is prompted in part by the aforementionedO

(
R− 1

2 +ε
)

bound of Luo/Sarnak.
Namely, as the ratio �(γ )/δ is taken successively larger, one wonders what happens to the
saturated noise level as a function of R. Likewise if �(γ )/δ is allowed to grow, say, like a
small power of R.

In both cases, the probable answer is not immediately clear and some further numerical
experimentation may well prove useful (compare [26] and [5, section 4.1]).
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